QUALITY AUDIT AND QUALITY IMPROVEMENT PLAN
at AREVA NP Le Creusot forging facility

London - September 12th, 2017
AREVA NP Creusot Forge

- RPV Shell
- Core plate
- RCP casing
- Monobloc closure head

- 220 people
- 2 presses (9000T and 11300T)
- 14 heat treatment furnaces
- 27 CNC machines

SG primary head
Elbow
Cold leg
Hot leg

High-performing people and technologies for safe and competitive nuclear plants worldwide

VALUES

Safety

Future Performance Integrity Passion
Creusot (and JCFC) quality topics timeline

1. **Carbon segregation**
 - Non ESPN-compliant mechanical tests on vessel head used to validate FA3 heads
 - Cause identified as high carbon segregation in the center part of the head
 - Risk assessment of presence of carbon segregation on other parts: one-piece heads, JCFC SG channel heads
 - Carbon measurement launched on several EDF steam generators
 - High carbon content measured on JCFC SG channel heads

 - Fall 2014
 - March 2015
 - Sept. 2015
 - Nov. 2015
 - March 2016
 - April 2016
 - August 2016

2. **Tensile tests**
 - Methodological deviations concerning tensile tests performed in Vulcain laboratory
 - External audit by Lloyd’s Register Apave
 - Further methodological deviations identified on tensile tests
 - Second external audit by Lloyd’s Register Apave + internal inspection on manufacturing files
 - Identification of “marked files”

 - March 2015
 - Sept. 2015
 - Nov. 2015
 - March 2016
 - April 2016

3. **Deviant QA practices**
 - Audit extended to Jeumont and St Marcel factories
 - Analysis of marked files (~6 000 for nuclear parts)
 - Extension of the files inspection to all manufacturing files

In 2015, AREVA NP initiated an exhaustive control of its quality process on the equipment produced in its manufacturing site of Creusot Forge.

- Through this review, some inconsistencies have been detected in the manufacturing tracking records.
- These inconsistencies are mainly related to the presence of “marked files” in the manufacturing archives.

Consequently, AREVA NP decided to check all the manufacturing records archives to identify any marked file over around ~9000 files since 1965.
In addition, and beyond the identification and assessment of the “marked files”, AREVA NP decided end of September 2016 to expand its review over all the forgings manufactured in Creusot Forge for Nuclear application.

This implies the review of all the records related to nuclear equipment manufactured by AREVA Creusot Forge.

There are around 6000 parts which have been manufactured in Areva Creusot Forge for nuclear application.
Methodology

- **Files Digitalization**
 - Review of the documentation
 - Report the findings

- **Inspection Review**
 - Complete the technical analysis
 - Release the FTT (Sheet for Technical treatment) and FQ (Quality treatment)

- **Technical Review**
 - Validate technical deviations

- **Technical Committee**
 - Release deviations notice and discuss treatment
 - Notify the affected customer of the situation

- **Deviation Management**

- **Deviation Closure**

- **EOMR update (option)**

Classification in 3 categories:

- No deviation
- Deviation to a Creusot Forge internal requirement
- Deviation to a Customer’s requirement or a Code requirement

In case of a deviation to an internal, a Customer’s or a Code requirement, two types of conformity reports will be issued:

- Internal NCN (Non Conformance Notice) provided for information to the customer
- Non Conformance Report to be reviewed and discussed by the customer
Past manufacturing files review status

Milestones

<table>
<thead>
<tr>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
</table>

Inspection

Technical review

Non conformances treatment

Up-date of manufacturing files
Creusot Quality Audit: organization

- A dedicated team of ~180 people has been set up in Paris in order to review the past manufacturing files

- **BU Manager**
 - **Project Controller**
 - « Creusot Audit »
 - Project Manager
 - Files Digitalization
 - Inspection ~90 people
 - Technical Analysis ~50 people
 - NCR* issuance and Quality ~50 people

NCR: Non-Conformity report
CREUSOT QUALITY IMPROVEMENT PLAN
Improvement Plan – Levers and Axes

<table>
<thead>
<tr>
<th>Technical lever</th>
<th>Organizational and cultural lever</th>
<th>Surveillance lever</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis A</td>
<td>Processes industrial control and deployment of standard quality and monitoring tools</td>
<td>Axis B Development of new processes to meet the most recent global regulations requirements</td>
</tr>
<tr>
<td>Axis C</td>
<td>Strengthening organization and skills by taking into account past experience</td>
<td>Axis D Strengthening safety culture at each level of the plant</td>
</tr>
<tr>
<td>Axis E</td>
<td>Surveillance over the complete value chain</td>
<td>ACF 220 people involved in 315 Activities for improving safety & quality</td>
</tr>
</tbody>
</table>

Activities

Team involvement

► ACF improvement plan is structured according to a hierarchy of actions, attributed to leaders, and involving all team members.

<table>
<thead>
<tr>
<th>Improvement plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 axis</td>
</tr>
<tr>
<td>52 actions</td>
</tr>
<tr>
<td>315 activities</td>
</tr>
<tr>
<td>4 leaders</td>
</tr>
<tr>
<td>18 leaders</td>
</tr>
<tr>
<td>Contributors from all departments</td>
</tr>
</tbody>
</table>

► Each of the 52 actions is followed and integrated into ACF Management System.
Summary of the Improvement Plan

<table>
<thead>
<tr>
<th>Axis A</th>
<th>Processess industrial control and deployment of standard quality and monitoring tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis B</td>
<td>Development of new processes to meet the requirements of the most recent global regulations</td>
</tr>
<tr>
<td>Axis C</td>
<td>Strengthening organization and skills as defined by taking into account past experience feedback</td>
</tr>
<tr>
<td>Axis D</td>
<td>Strengthening safety culture at all levels of the plant</td>
</tr>
<tr>
<td>Axis E</td>
<td>Surveillance over the complete value chain</td>
</tr>
</tbody>
</table>

A.1 - Identify technical causes of past malfunctions for different families of non-conformities

<table>
<thead>
<tr>
<th>B.1</th>
<th>Improve the monitoring of key process parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1</td>
<td>Drawing the feedback from the analysis of the past</td>
</tr>
<tr>
<td>D.1</td>
<td>Develop a communication plan to share the improvement plan with all staff</td>
</tr>
<tr>
<td>E.1</td>
<td>Cause analysis and Risk analysis</td>
</tr>
</tbody>
</table>

A.2 - Deploy FMECAs and master key processes

<table>
<thead>
<tr>
<th>B.2</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.2</td>
<td>Identify key competencies and manage the corresponding recruitment plan</td>
</tr>
<tr>
<td>D.2</td>
<td>Raising awareness of the culture of 100% transparency</td>
</tr>
<tr>
<td>E.2</td>
<td>1st level: operational teams</td>
</tr>
</tbody>
</table>

A.3 – Ensure traceability

<table>
<thead>
<tr>
<th>B.3</th>
<th>Technical capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.3</td>
<td>Know-how and sustainability</td>
</tr>
<tr>
<td>D.3</td>
<td>Deploy a safety culture development program (with periodic evaluation)</td>
</tr>
<tr>
<td>E.3</td>
<td>2nd level: Creusot Quality Direction</td>
</tr>
</tbody>
</table>

A.4 – Master the documentation

<table>
<thead>
<tr>
<th>B.4</th>
<th>Integration of nuclear pressure equipment prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.4</td>
<td>Organization of internal inspection & control</td>
</tr>
<tr>
<td>D.4</td>
<td>Operational communication for improvement</td>
</tr>
<tr>
<td>E.4</td>
<td>3rd level: independent oversight</td>
</tr>
</tbody>
</table>

A.5 - Strengthen the steering of non-conformities and associated corrective actions

| C.5 | External interfaces |

MDEP 4th conference on New Reactor Design Activities, London – September 12th, 2017
Multinational Vendor Inspection (MDEP) took place Nov. 28th to Dec. 2nd in Creusot Forge
11 representatives from ASN, NRC, ONR, NNSA, CNSC, STUK

The main objective of this inspection was to evaluate:
- “How Creusot Forge and AREVA NP control the conformity of forgings along the manufacturing process (past and future fabrications).”

Results:
- Letter received from ASN end of January: 18 Corrective Actions and 14 complementary information Requests related to (1) Improvement Plan of CF and (2) the review of past manufacturing files.
- (1) - Almost of the actions were already included in the Improvement Plan of Creusot Forge issued in December 2016. The Plan was further updated in order to comply with all corrective actions
- (2) – All the actions have been implemented

The major point is about Cultural Transformation – How to reinforce Safety Culture?
- This point is included in axis D implemented with the support of a company specialized in cultural transformation.
- Several actions are already done such as elimination of the use of corrective fluid, reinforcement of traceability in case of modifications, safety Culture evaluation…

The efficiency of the actions is measured during the manufacturing of the already launched test parts (SG shell and MCL)
Safety culture focus
Training

Safety culture Assessment: done in week 8 / February 2017

- Result: level 2 out of 3: “Safety is a key objective in the organization. As employee for nuclear energy, nuclear safety is an important matter for you. It’s time now for a permanent involvement”
- Our target: reach level 3 implementation of cultural axis (axis D) of our Quality Improvement Plan

Set up of a three steps training:

- Deployment of 20 one-day training session: Learning of nuclear safety bases
 - 20 sessions between May and June 2017

- Complementary one-day visit at Bugey NPP: understanding of NPP safety issues
 - 5 sessions forecast in June (28th -29th), July (11th & 13th) and September (20th)

- Final half-day session at St Marcel: Knowing of internal customer, safety issues, steam generator

- All ACF team involved = 220 people

First results

- Quizz made at the end of “Learning the nuclear safety bases” session
 - 90% accepted at first exam

- Second auto-evaluation quizz forecast in october/november to compare results with first evaluation.
Thank you for your attention