Digital Instrumentation and Control: Current and Emerging Technical Challenges in the U.K.

Stephen Wardle
Principal Inspector – Nuclear Safety
Digital Instrumentation and Control: Current and Emerging Technical Challenges in the U.K.

- I&C architecture design
- Commercial Off-The-Shelf Software (COTS)
- Justification of smart devices
- Development of coherent safety cases
I&C Architecture Design

- Categorisation of safety functions
- Classification of systems
- Simplicity, separation and segregation
 - Perceived move towards more integrated systems
- Common cause failures
- Interconnections between systems of different safety classes
- Fault propagation through the architecture
- Support systems e.g. power supplies, HVAC
- Security by design (defence in depth for security and safety)
Safety System Platform Level Architecture

- Safety System [computer based] Class 1
 - Data/info flow between Class 1 & 2 systems
- Safety Related System [computer based control system] Class 2 / 3
 - Data/info flow between Class 2 systems
- Safety System [non-computerised] Class 2
Commercial Off-The-Shelf Software (COTS)

- Use of COTS in Digital I&C systems important to safety
 - Control and Protection system platforms
 - Smart devices
- Depth of COTS
 - Embedded devices e.g. FPGAs
 - Embedded software e.g. operating systems
 - Tools e.g. compilers
- Typically not developed for nuclear safety applications
- Access to evidence is the key
 - Manufacturers IPR
 - Certification
The Two-Legged Approach – NS-TAST-GD-046

Production Excellence
Assessment of conformance with nuclear standards applicable for the class of the system
Manufacturer’s type tests

Independent Confidence Building Measures
Dependent on the class, a justified selection from:
- Examination, inspection, maintenance and test records
- Proof test records
- Commissioning tests
- Hardware reliability analysis
- Prior use
- Certification
- Supplier pedigree
- Review of supplier’s standards and procedures
- Functional safety assessment
- Review of tools
- Static analysis
- Dynamic analysis
- Statistical testing

Compensatory Measures
Depends on gaps found in production excellence
Examples:
- Review of CVs (by licensee)
- Module tests (by manufacturer)
- Statistical tests (by either)
Smart Devices

- Particular class of COTS
- Ubiquitous – instruments, power supplies, drives, electrical fault relays etc.
- Safety justification issues as for COTS
- Standards and CINIF research informing UK relevant good practice
- Willingness of manufacturers to cooperate
- Nuclear market small – limited incentive for manufacturers
- Time and effort involved
The UK regulatory expectation is that Licensees submit:

- A pre-construction safety report (PCSR) for the plant
- Basis of safety case reports (BSCs) for each of the principal I&C systems

A claims-arguments-evidence approach to the safety justification of I&C systems is encouraged

The sort of questions that have been raised include:

- What does a safety demonstration contain?
- What is claim-based reasoning?
- When is the case complete?
Safety Cases for Computer-based Safety Systems

Claim
What do I need to demonstrate?

Sub-claims
What does my claim depend on?

Argument
Why the evidence is sufficient to demonstrate the sub-claim

Evidence
Where to find the evidence

Office for Nuclear Regulation
Applicable MDEP DICWG Common Positions

- MDEP DICWG Common Position 09 - Safety Design Principles and Supporting Information For The Overall I&C Architecture
- MDEP DICWG Common Position 08 - The Impact of Cyber Security Features on Digital I&C Safety Systems
- MDEP DICWG draft Common Position 14 - The Qualification of I&C Platforms For Use In Important To Safety Applications
- MDEP DICWG Common Position 07 – The Selection and Use of Industrial Digital Devices of Limited Functionality
Thank You