DESIGN ISSUES TO BE CONSIDERED ON THE BASIS OF FUKUSHIMA LESSONS

Jukka Laaksonen
WENRA chair, DG of STUK
Need for design improvements in GEN III reactors?

• The current safety standards written for Gen III reactors, such as
 – IAEA NS-R-1 *Safety of Nuclear Power Plants: Design*, as approved by the IAEA Commission of Safety Standards in May 2011, and
 – WENRA *Statement on safety objectives for new nuclear power plants*, issued in November 2010,

 seem to be valid and do not need changes.

• Nevertheless, their application in a more strict manner and interpretation as concerns safety margins needs to be reconsidered:
 – accounting site specific features and hazards
 – protecting from/avoiding common cause failures
Need for design improvements in GEN III reactors?

• Design specific WG’s of MDEP provide an excellent platform to discuss on the possible needs for design improvements.

• In addition to regulators, also respective vendors and possibly utilities constructing or planning to construct certain reactor should attend the discussions.
Site specific features and hazards

• Increased robustness might be a general answer to some hazards but a careful site analysis is necessary to address adequately all conceivable hazards of a specific site
 – Japan has tsunamis, do others have something else to be considered more carefully than in the past (dam failures causing large flood, large earthquakes, oil spills to sea, ...) ?
 – different hazards should result in differences in the design

• Also positive site features could be utilised, such as the high hill next to Flamanville plant
 – emergency coolant by gravity?
 – enhanced physical separation/protection of some redundant equipment?
Avoiding common cause failures – physical protection and separation

- Strong and possibly leak tight barriers to protect vital equipment from external influence
- Double walls separated by adequate distance to avoid propagation of vibrations
- Improved lay-out
 - redundant subsystems/equipment separated by distance
 - redundant subsystems/equipment protected differently to account for different hazards (e.g., some located at low elevation to protect from seismic events, others located at high elevation to protect from floods)
- Thoroughly verified safety margins against exposure to internal fires or floods
Avoiding common cause failures – increased diversity

• At least two fully diverse means should provide each safety function
 – Passive systems
 – Active systems not needing any electrical power
 • diesel driven pumps,
 • hydraulic valve actuators,
 • manually remote operated valves,
 • (but not much credit should be given to steam turbine operated pumps)
 – Air cooling with small “cooling towers” as a secondary heat sink, at plants where the sea or river water cooling provides the primary heat sink
Protecting from common cause failures –
transportable equipment for safety functions

- Incorporation of easily accessible (also in accident conditions) hook-ups for connection of transportable equipment
 - Clean water to primary and secondary circuit, to the containment and to the spent fuel pools
 - Borated water as needed to ensure sub-criticality
 - Electrical power of various voltage levels and currencies
 - Electrical power for charging batteries
 - Robust instruments for use in harsh operating conditions
- Several alternative and optimally selected connection points to plant systems should be available
- Well protected storage for transportable equipment and vehicles