Doosan’s Nuclear I&C system

Doosan Heavy Industries & Construction
Kook Hun Kim, Ph. D
kookhun.kim@doosan.com
Contents

1. Korea’s NPP status
2. DOOSAN’s Facility
3. Doosan Digital I&C Experience
4. Suggestions
Korea’s NPP status & Korea Map

- **Korea’s NPP status (July 2011)**
 - 21 units operating
 - 7 units under construction
 - 8 units planned

Oversea

- UAE # 1, 2, 3, 4

Korea’s NPP status (July 2011)

- Ulchin Nuclear Power Site
 - # 1, 2, 3, 4, 5, 6
- Shin-Ulchin
 - # 1, 2
- Shin-Ulchin
 - # 3, 4
- Wolsong Nuclear Power Site
 - # 1, 2, 3, 4, 5, 6
- Shin-Wolsong
 - # 1, 2
- Kori Nuclear Power Site
 - # 1, 2, 3, 4
- Shin-Kori
 - # 1
- Shin-Kori
 - # 2, 3, 4
- Shin-Kori
 - # 5, 6

- Yonggwang Nuclear Power Site
 - # 1, 2, 3, 4, 5, 6

- NPP in Operation
- NPP under Construction
- NPP Planed
DOOSAN’s Facility

INTEGRATED MANUFACTURING COMPLEX

DOOSAN has an integrated manufacturing facility which is capable of from raw material production to final assembly of components for Power Plants in Changwon, Korea.

- Total Area : 1,100 acres
- Floor Space : 137 acres
Doosan Digital I&C Experience

- **National R&D Project : KNICS (2001. 7 ~ 2008.4)**

- **KINS SER**
 - Acquisition of Safety Evaluation Report from KINS (Korea Institute of Nuclear Safety)
 - Plant Protection System, Engineered Safety Features - Component Control System, Reactor Core Protection System, Class-1E Programmable Logic Controller (09/2/18)

- **IAEA Review**
 - Objective
 - Improve the acceptance and reliability of the DOOSAN I&C system.
 - Assist in developing a firm design basis for projects in the domestic and international markets

- **Strength of Doosan I&C**
 - Pre-installation validation using integrated performance and validation test facility
 - Third party review and KINS safety evaluation during R&D phase.
 - Application of PLDs a development process that is similar to the software development process.
 - Application of TTL logic downstream of the main priority logic (diversity policy)
 - Fault tolerance structure of PPS (2 bistable processor and 3 coincidence processor per each channel) & ESF-CCS (2 out of 3 structure)
 - Design of the control rod control system eliminating single point vulnerability.
Doosan Digital I&C Experience

- Shin-Ulchin #1, 2 under manufacturing

- Control Rod System (CRCS/CEDM-CS)
 - Contracted 12 units.
 - 4 units supplied.
 - Main Features
 - Eliminate SPVs
 1) Double & DC Holder: Never drop the CEAs except RPCS or PPS
 2) Full redundant Design: Any single failure will not affect the normal operation
 - Enhance the Operability & Maintainability
 1) MTP MMI: Easily Find the Root Cause
 2) Drawer type PCM

- ASTS (Automatic seismic trip system)
 - Contracted 20 units (Kori 4 units, Yonggwang 6 units, Wolsong 4 units, Ulchin 6 units)
 - 4 units supplied.
Suggestions (based on Doosan experience)

- From 2008 to 2010, AREVA, Westinghouse & EDF suggested and commented issues in the viewpoint of supplier/vendor/system designer.

 System designer is different from each other

- Safety (best performance) could be changed according to design and operation principle.

 slow start, long stride & high propulsion, finish spurt or quick start, early propulsion & manages the race
Suggestions (based on Doosan experience)

- It is important to harmonize existing regulatory environment. However it takes long and difficult work.
- As a more effective way, it is better to develop a common regulatory position (ex. cyber security, FPGA based controller, CGID).
- There was a drastic change in some standards (ex. EPRI TR 102323), which could burden nuclear vendors.